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Connes-Kasparov Picture Book

Let’s examine the real reductive group 
 — the group of  matrices


 over the quarternions with


.


The diagonal subgroup  





is a maximal compact subgroup. Its 
irreducible representations are parametrized 
by pairs  of nonnegative integers.

G = Sp(1,1) 2 × 2
g

g [1
−1 ] g* = [1

−1 ]

K = {[a
d]} ≅ SU(2) × SU(2)

(m, n)

I’ll be examining the Connes-Kasparov isomorphism in C*-algebra K-theory …



K-Types and Minimal K-Types
We’re interested in understanding the 
tempered dual of  in terms of the dual 
of .  One way to try to do so is to 
restrict representations from  to , and 
then decompose into irreducible 
representations of .


(The orange and blue dots in the 
examples indicate which representations 
are involved, in the Connes-Kasparov 
parametrization that I’ll discuss soon).


Definition. The minimal -types of a 
representation of  are the 


-types closest to the trivial 
representation  of .

G
K

G K

K

K
G = Sp(1,1)

K
(0,0) K



Discrete Series

The diagram shows the minimal K-
types of the discrete series  of G (the 
irreducible and square-integrable 
representations).  These are the 
isolated points in the tempered dual.


Theorem (Schmid). Each discrete 
series has a unique minimal K-type, 
and all these minimal K-types are 
distinct from one another. 

Most irreducible representations of K 
occur as minimal K-types of the 
discrete series, but not all of them …




Vogan’s Theorem

A remarkable discovery of David Vogan 
is that every irreducible representation 
of K arises as a minimal K-type 
somewhere in the tempered dual, and 
no irrep. of K is associated to more than 
one component of the tempered dual.

Some components 
have more than one 
minimal K-type.  But 
this, however, is an 
additional feature of 
Vogan’s theorem …



The Tempered Dual from Vogan’s Theorem

In fact, using these results of Vogan, plus a 
little bit more, one can completely describe 
the tempered dual. 


First, I’ve distorted the diagram showing the 
irreducible representations of K to indicate 
that the continuous series representations 
have alternately one or two minimal K-
types.  


According to Vogan’s theorem, the base 
representations in these continuous series 
are alternately irreducible, or decompose 
into two irreducible representations.



The Tempered Dual

The remaining representations in the 
continuous series — above the base 
representations — are all irreducible.


The tempered dual is the disjoint union of the 
discrete series with the continuous series, as 
indicated. 



Tempiric Representations and Vogan’s Theorem

Definition. A representation is tempiric 
[terminology of Alexandre Afgoustidis] if it is 
tempered, irreducible and has real 
infinitesimal character.


These are the discrete series and the bases of 
the continuous series.

Theorem (Vogan). The irreducible representations of 
K and the tempiric representations of G are in 
bijection via minimal K-type, and each minimal K-type 
has multiplicity one.



Connes-Kasparov Theory

The Connes-Kasparov theory uses a shifted 
version of the set of irreducible representations 
of .  These shifted representations 
correspond to Dirac-type operators on .


The Connes-Kasparov isomorphism is, in 
effect, a bijection from above the shifted 
representations of K to the set of  (nearly all 
of) the components of the tempered dual of G.


More about this later, but roughly we are 
talking here about the K-theory (after Atiyah 
and Hirzebruch) of the tempered dual, 
considered as a topological space.

K
G/K



Discrete Series from the Connes-Kasparov Point of View

Most of the K-theory generators are in 
bijection with the discrete series of  (in an 
equal rank example such as ).


(The shifted representation of K that is 
attached to a given discrete series coincides 
with the Harish-Chandra parameter of the 
discrete series representation. This is one of 
the reasons for making the shift.)


We obtain a picture of the discrete series that 
is is reminiscent of the minimal K-type picture, 
but it is not the same.

G
G = Sp(1,1)



Essential Continuous Series

The remaining shifted representations are in 
bijection with some of the continuous series 
components of the tempered dual.


The picture is again reminiscent of Vogan’s 
theory, but not the same.


An important differences: not all continuous 
series contribute to K-theory. 


Example. The spherical principal series. 


That is, some parts of the tempered 
representation theory seem to be invisible to 
K-theory, in contrast with Vogan’s theory.



Connes-Kasparov Bijection versus Vogan’s Bijection

Our goal is to remedy this, and at the same 
time to put Vogan’s bijection into a K-theoretic 
context. 


This is in response to David Vogan, who has 
complained to me that in RTNCG we are 
studying the wrong C*-algebra of G ...


The hardest part of Vogan’s theorem is the 
existence of a representation of G with a 
given minimal K-type. Can K-theory be used 
for this?




Tempered Representations and the Reduced Group C*-Algebra

G = Real reductive (connected, linear) Lie group (like  or  or …).


From the C*-algebra point of view,  tempered (admissible) unitary representations of G 
are the same thing as representations of the reduced group C*-algebra (valued in the C*-
algebra of compact operators).

Sp(1,1) SL(n, ℝ)

π : G ⟶ U(Hπ) ↔ π : C*r (G) ⟶ 𝔎(Hπ)

What is this good for? The tempered dual is constructed from families of representations 

With  a countable family of discrete parameters and  continuous parameters 
(here  is a real vector space), leading to C*-algebra morphisms

{δ} ν ∈ 𝔞*
𝔞δ

πδ,ν : G → U(Hδ)

πδ : C*r (G) ⟶ C0(𝔞*δ , 𝔎(Hδ))



Tempered Representations and the Reduced Group C*-Algebra

In fact these families of representations combine into a C*-algebra isomorphism

that neatly summarizes work of Harish-Chandra and Langlands.


The  are finite groups acting as intertwining operators, reflecting the facts that not all 
 are in equivalent, and not all  are irreducible.  The full story of these intertwiners 

is complicated, but Wassermann pointed out that the Knapp-Stein theory of intertwining 
operators implies 

Wδ
πδ,ν πδ,ν

K*(C0(𝔞*δ , 𝔎(Hδ))Wδ) = 0 or ℤ .

⊕δ πδ : C*r (G) ⟶ ⊕δ C0(𝔞*δ , 𝔎(Hδ))Wδ
≅

As for the full story (and also the story at the level of K-theory) this may told using the 
work of Knapp and Zuckerman, and independently the work of Vogan.



K-Theory and Representation Theory

K*(C0(𝔞*δ , 𝔎(Hδ))Wδ) ≅ ℤ .

For most components of the tempered dual (that is to say, for most of the discrete 
parameters ),δ

But not for all.  For instance the K-theory of the spherical dual is zero.

This is not optimal from the point of view of representation theory.  But given the overall 
similarity between David Vogan’s theorem about tempiric representations and the 
Connes-Kasparov isomorphism, it is natural to ask (as Vogan did) if the Connes-
Kasparov theory can be “adjusted” so as to “see” all components of the tempered dual?

More ambitiously, it is natural to ask (as Vogan did not) if the Connes-Kasparov 
isomorphism can be “adjusted” so as to “include,” or be equivalent to, Vogan’s 
theorem?



Smoothing Operators and the Reduced Group C*-Algebra

It will be convenient to reorganize the information included within the reduced group C*-
algebra, roughly speaking by breaking it into a collection of matrix parts …

 = finite-dimensional unitary representations of V1, V2 K

 =𝖢*(V1, V2)
norm-closure of the -equivariant, properly supported 
smoothing operators  

G
L2(G/K, V1) → L2(G/K, V2)

Lemma. 𝖢*(V1, V2) ≅ [C*r (G) ⊗ Homℂ(V1, V2)]K×K

These operator spaces constitute the morphisms in a C*-category  (whose objects 
are the finite-dimensional unitary representations of ).

𝖢*G
K

Lemma. K*(𝖢*G) ≅ K*(C*r (G))

Lemma. 𝖢*(V1, V2) ≅ ⊕δ C0(𝔞δ, 𝔎([Hδ ⊗ V1]K, [Hδ ⊗ V2]K))Wδ

finite direct sum

finite-dimensional



Pseudodifferential Operators on the Symmetric Space

  =  finite-dimensional unitary representations of V1, V2 K

  =𝖯*(V1, V2)
norm-closure of the -equivariant, properly supported order zero 
pseudodifferential operators  (all of 
which are -bounded)

G
L2(G/K, V1) → L2(G/K, V2)

L2

We aim to study the following spaces of operators, constituting a new C*-category,  :𝖯*𝖦

Recall that a pseudodifferential operator (on euclidean space, to begin with) is an 
operator  of the form 

(Af )(x) =
1

(2π)n ∫ℝn

a(x, ξ) ̂f(ξ)eixξ dξ

for an appropriate symbol function  (including for instance , which is an 
example of an order zero symbol, producing an order zero operator).

a(x, ξ) (1 + ξ2)1/2



Why Pseudodifferential Operators?

Recently, a new perspective on pseudodifferential operators, involving Alain Connes’ 
tangent groupoid has come into view in noncommutative geometry (work of Claire 
Debord, Georges Skandalis, Robert Yuncken and Erik van Erp).

The deformations to the normal cone for the inclusion of the basepoint into , and for 
the inclusion of  into ,  are the smooth families of symmetric spaces and Lie groups

G/K
K G

Xt = {G/K t ≠ 0
𝔭 t = 0 Gt = {G t ≠ 0

K ⋉ 𝔭 t = 0

where  is the Cartan decomposition. 𝔤 = 𝔨 ⊕ 𝔭

Equivariant (classical) pseudodifferential operators on  arise naturally from these 
spaces …

G/K

Cartan motion group



Pseudodifferential Operators and the DNC
Theorem (Debord & Skandalis, van Erp & Yuncken).  Each (classical) equivariant, 
properly supported, order zero PSDO  on  extends to a smooth family of 
equivariant operators

A G/K = X1

At : C∞
c (Xt, V1) ⟶ C∞

c (Xt, V2) (t ∈ ℝ)
which is moreover invariant under rescalings , modulo smoothing 
operators. And vice versa.  

The family  is determined by , modulo smoothing operators.


The operator at  is a version of the principal symbol of the operator .

Xt → Xλt (λ > 0)

{At} A

t = 0 A = A1

Let’s now pass to norm completions, C*-algebras and C*-categories, and K-theory …



K-Theory of Order Zero Pseudodifferential Operators: Technicalities

P*G0
(V1, V2) ⟵ P*𝔾(V1, V2) ⟶ P*G1

(V1, V2)

C*G0
(V1, V2) ⟵ C*𝔾(V1, V2) ⟶ C*G1

(V1, V2)

P*G0
/C*G0

(V1, V2) ⟵ P*𝔾 /C*𝔾(V1, V2) ⟶ P*G0
/C*G1

(V1, V2)

 Families 
over [0,1] eval. at t=1eval. at t=0

The leftwards maps (functors) below are isomorphisms in K-theory for simple reasons.

The bottom maps (functors) isomorphisms on the nose.

The top right map (functor) is an isomorphism in K-theory; this is one formulation of 
the Connes-Kasparov (a.k.a. Baum-Connes) isomorphism.



K-Theory of Order Zero Pseudodifferential Operators: Summary

Denote by  the C*-category of finite-dimensional unitary representations of .𝖱𝖾𝗉K K

And remember that  is the C*-category generated by order zero, equivariant 
pseudodifferential operators (with proper support), acting between homogeneous 
vector bundles on .

𝖯*G

G/K

Theorem. The obvious functor from  to  is an isomorphism in K-theory.𝖱𝖾𝗉K 𝖯*G
Remark.  So  and .  This is contingent on the Connes-
Kasparov isomorphism, and in fact is equivalent to the Connes-Kasparov isomorphism.

K0(𝖯*G) = R(K) K1(𝖯*G) = 0

Proof. Contingent on the Connes-Kasparov isomorphism, to prove the theorem for , it 
suffices to check it for .

G
G0



Multiplicities

Denote by  the C*-category of finite-dimensional Hilbert spaces.𝖥𝗂𝗇

If  is tempered, admissible unitary representation of G, and if , then 
there is an induced  

π A ∈ 𝖯*G(V1, V2)

V ⟼ [Hπ ⊗ V]K and A ↦ Aπ

Aπ : [Hπ ⊗ V1]K ⟶ [Hπ ⊗ V2]K

and the formulas 

define a functor  𝗆𝗎𝗅𝗍π : 𝖯*G → 𝖥𝗂𝗇

R(K) = K*(𝖱𝖾𝗉𝖪) ⟶ 𝖪𝟢(𝖯*𝖦) ⟶ 𝖪𝟢(𝖥𝗂𝗇) ≅ ℤ

takes an irrep. of  to the multiplicity of the dual irrep. in K π

Lemma. The composite morphism of abelian groups 



Vogan’s Tempiric Representations

R(K) = K*(𝖱𝖾𝗉𝖪) ⟶ 𝖪𝟢(𝖯*𝖦) ⟶ ⊕π 𝖪𝟢(𝖥𝗂𝗇) ≅ ⊕π ℤ
obtained from the multiplicities of all tempiric representations is an isomorphism of 
abelian groups.

Theorem. The composition 

Proof.  This is Vogan’s theorem.

Since the first arrow is an isomorphism — by virtue of Connes-Kasparov — it is 
obviously of interest to find a direct proof that the second arrow is an isomorphism …



Spectral Picture of Pseudodifferential Operators

On this page assume that the real reductive group  has real rank one.G

Theorem. In real rank one, the multiplicity construction defines a Fourier transform map 
(functor) 

P*G(V1, V2) ⟶ ⊕δ C0(𝔞*δ , 𝔎([Hδ ⊗ V1]K, [Hδ ⊗ V2]K))Wδ

extending the Fourier transform isomorphism for smoothing operators, and this is an 
isomorphism.

Form the radial compactification  of the vector space  .𝔞*δ 𝔞*δ

Theorem. In real rank one, the multiplicity functor   (direct sum over 
Vogan’s tempiric representations) is a homotopy equivalence.

𝖯*𝖦 → ⊕π 𝖥𝗂𝗇

Proof. Vogan’s representations occur precisely at all . Use a homotopy argument.0 ∈ 𝔞*δ



Thank You! 
and  

Happy Birthday, Michèle! 


